Abstract

In this paper, we consider a singular Volterra type integral equation of the second kind, to which some boundary value problems of heat conduction in domains with a boundary varying with time are reduced by the method of thermal potentials. The peculiarity of such problems is that the domain degenerates into a point at the initial moment of time. Accordingly, a distinctive feature of the integral equation under study is that the integral of the kernel, as the upper limit of integration tends to the lower one, is not equal to zero. This circumstance does not allow solving this equation by the method of successive approximations. We constructed the general solution of the corresponding characteristic equation and found the solution of the complete integral equation by the Carleman–Vekua method of equivalent regularization. It is shown that the corresponding homogeneous integral equation has a nonzero solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.