Abstract

We introduce a new ADI-based low rank solver for AX−XB=F, where F has rapidly decaying singular values. Our approach results in both theoretical and practical gains, including (1) the derivation of new bounds on singular values for classes of matrices with high displacement rank, (2) a practical algorithm for solving certain Lyapunov and Sylvester matrix equations with high rank right-hand sides, and (3) a collection of low rank Poisson solvers that achieve spectral accuracy and optimal computational complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.