Abstract
In the 1960s, Atkinson introduced an abstract algebraic setting for multiparameter eigenvalue problems. He showed that a nonsingular multiparameter eigenvalue problem is equivalent to the associated system of generalized eigenvalue problems, which is a key relation for many theoretical results and numerical methods for nonsingular multiparameter eigenvalue problems. In 2009, Muhič and Plestenjak extended the above relation to a class of singular two-parameter eigenvalue problems with coprime characteristic polynomials and such that all finite eigenvalues are algebraically simple. They introduced a way to solve a singular two-parameter eigenvalue problem by computing the common regular eigenvalues of the associated system of two singular generalized eigenvalue problems. Using new tools, in particular the stratification theory, we extend this connection to singular two-parameter eigenvalue problems with possibly multiple eigenvalues and such that characteristic polynomials can have a nontrivial common factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.