Abstract
Mennicke (Proc R Soc Edinb Sect A 67:309–352, 1963; Proc R Soc Edinb Sect A 88:151–157, 1981) investigated the number of conic points with isotropies of orders 3, 4 and 6 that can appear in the orientable twofold orbifold covering of the orbifold $$Q_{f}$$ associated with an integral ternary quadratic form. Mennicke made essential use of a theorem of Jones (The Arithmetic Theory of Quadratic Forms. The Carus Mathematical Monographs, vol. 10. MAA, Baltimore, 1950, Theorem 86). In this paper we revisit Mennicke’s results and we extend them to $$Q_{f},$$ that is, even when $$Q_{f}$$ is non-orientable. Our method is new and independent of Jones’ Theorem. We also study the possible cusp points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.