Abstract
AbstractThis study reports on the development of a complete solution methodology for the simulation of a hydrocyclone. A commercial software package, Ansys 12 Fluid Dynamics, is used to solve the governing conservation equations. Turbulence is modelled using the large eddy simulation, and the discrete particle model was used to predict the particle separation. Two hydrocyclones of differing geometries are explored, and the results compared with experimental values. It is shown that there are two key factors for obtaining a reliable result. The first is the domain discretisation, and the second is the generation of a consistent initial value, including the establishment of a stable air core. Using the methodology developed, superior agreement was obtained for predicted and experimental values of pressure, velocity distribution, air core profile and separation efficiency. © 2012 Canadian Society for Chemical Engineering
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.