Abstract
The objects of study in this thesis are knots. More precisely, positive braid knots, which include algebraic knots and torus knots. In the first part of this thesis, we compare two classical knot invariants - the genus g and the signature σ - for positive braid knots. Our main result on positive braid knots establishes a linear lower bound for the signature in terms of the genus. In the second part of the thesis, a positive braid approach is applied to the study of the local behavior of polynomial functions from the complex affine plane to the complex numbers. After endowing polynomial function germs with a suitable topology, the adjacency problem arises: for a fixed germ f, what classes of germs g can be found arbitrarily close to f? We introduce two purely topological notions of adjacency for knots and discuss connections to algebraic notions of adjacency and the adjacency problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.