Abstract

The sign characteristics of Hermitian matrix polynomials are discussed, and in particular an appropriate definition of the sign characteristics associated with the eigenvalue infinity. The concept of sign characteristic arises in different forms in many scientific fields, and is essential for the stability analysis in Hamiltonian systems or the perturbation behavior of eigenvalues under structured perturbations. We extend classical results by Gohberg, Lancaster, and Rodman to the case of infinite eigenvalues. We derive a systematic approach, studying how sign characteristics behave after an analytic change of variables, including the important special case of Möbius transformations, and we prove a signature constraint theorem. We also show that the sign characteristic at infinity stays invariant in a neighborhood under perturbations for even degree Hermitian matrix polynomials, while it may change for odd degree matrix polynomials. We argue that the non-uniformity can be resolved by introducing an extra zero leading matrix coefficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.