Abstract

We study the complexity of the Shortest Linear Program (SLP) problem, which is to minimize the number of linear operations necessary to compute a set of linear forms. SLP is shown to be NP-hard. Furthermore, a special case of the corresponding decision problem is shown to be Max SNP-Complete. Algorithms producing cancellation-free straight-line programs, those in which there is never any cancellation of variables in GF(2), have been proposed for circuit minimization for various cryptographic applications. We show that such algorithms have approximation ratios of at least 3/2 and therefore cannot be expected to yield optimal solutions to non-trivial inputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.