Abstract

We study a mean value of the shifted convolution problem over the Hecke eigenvalues of a fixed non-holomorphic cusp form. We attain a result also for a weighted case. Furthermore, we point out that the proof yields analogous upper bounds for the shifted convolution problem over the Fourier coefficients of a fixed holomorphic cusp form in mean.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.