Abstract

It is proved that the Shannon zero-error capacity of the pentagon is \sqrt{5} . The method is then generalized to obtain upper bounds on the capacity of an arbitrary graph. A well-characterized, and in a sense easily computable, function is introduced which bounds the capacity from above and equals the capacity in a large number of cases. Several results are obtained on the capacity of special graphs; for example, the Petersen graph has capacity four and a self-complementary graph with n points and with a vertex-transitive automorphism group has capacity \sqrt{5} .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.