Abstract
This work addresses with sensitivity and uncertainty of the energy conversion of an oscillation-body wave energy converter with an artificial neural-network-based controller. The smart controller applies the model predictive control strategy to implement real-time latching control to the wave energy converter. Since the control inputs are future wave forces, an artificial neural network is developed and trained by the machine learning algorithm to predict the short-term wave forces based on the real-time measurement of wave elevation. The sensitivity of wave energy conversion with respect to wave frequency and receding horizon length are investigated. Uncertainties of the neural network that lead to the prediction deviation are identified and quantified, and their influences on the energy conversion are examined. The control command is derived inappropriately in the presence of prediction deviation leading to the reduction of energy absorption. Moreover, it is the phase deviation that reduces the energy absorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.