Abstract
Weak congruence lattices and semidistributive congruence lattices are both recent topics in universal algebra. This motivates the main result of the present paper, which asserts that a finite group G is a Dedekind group if and only if the diagonal relation is a join-semidistributive element in the lattice of weak congruences of G. A variant in terms of subgroups rather than weak congruences is also given. It is pointed out that no similar result is valid for rings. An open problem and some results on the join-semidistributivity of weak congruence lattices are also included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.