Abstract

Darrieus rotor is a promising technology for hydrokinetic and wind energy harvesting applications. However, the Darrieus rotor suffers from the problem of poor starting performance. The present research highlights solutions to improve the poor starting performance of the Darrieus rotor by introducing the hybrid rotor. Further, a comparative performance evaluation of conventional vertical axis Darrieus and hybrid rotors has been investigated numerically. The most widely used S-series S-1046 hydrofoil has been utilized by hybrid and Darrieus rotors. Further, two semicircular blades are used for the Savonius part of the hybrid rotor. The size of the Savonius part is optimized to obtain maximum performance from the hybrid rotor. Analyzing the flow field distributions across the turbine vicinity has highlighted various possible reasons. The study results have demonstrated that the hybrid rotor yields an exceptional increment of about 159.41% in the torque coefficient under low tip speed ratio (TSR) regimes (during initial starting) compared to the Darrieus rotor. However, due to the Savonius rotor's presence, the hybrid rotor's maximum power coefficient is reduced slightly compared to the maximum operating point of the Darrieus rotor. Further, the hybrid rotor yields a wider operating range than the single maximum operating point by the Darrieus rotor. The present investigations will assist the designers in selecting the site-specific hydrokinetic technology suitable for efficient and optimum use of hydrokinetic potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.