Abstract
We present a new method for differentiating between planetary transits and eclipsing binaries based on the presence of the ellipsoidal light variations. These variations can be used to detect stellar secondaries with masses ~0.2 M_sun orbiting sun-like stars at a photometric accuracy level which has already been achieved in transit surveys. By removing candidates exhibiting this effect it is possible to greatly reduce the number of objects requiring spectroscopic follow up with large telescopes. Unlike the usual candidate selection method, which are primarily based on the estimated radius of the orbiting object, this technique is not biased against bona-fide planets and brown dwarfs with large radii, because the amplitude of the effect depends on the transiting object's mass and orbital distance. In many binary systems, where a candidate planetary transit is actually due to the partial eclipse of two normal stars, the presence of flux variations due to the gravity darkening effect will show the true nature of these systems. We show that many of the recent OGLE-III photometric transit candidates exhibit the presence of significant variations in their light curves and are likely to be due to stellar secondaries. We find that the light curves of white dwarf transits will generally not mimic those of small planets because of significant gravitationally induced flux variations. We discuss the relative merits of methods used to detect transit candidates which are due to stellar blends rather than planets. We outline how photometric observations taken in two bands can be used to detect the presence of stellar blends.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.