Abstract

We present a key-recovery attack against the Digital Signature Algorithm (DSA). Our method is based on the work of Coppersmith l7r, and is similar in nature to the attacks of Boneh et al. l5,9r which use lattice reduction techniques to determine upper bounds on the size of an RSA decryption exponent under which it will be revealed by the attack. This work similarly determines provable upper bounds on the sizes of the two key parameters in the DSA for which the system can be broken. Specifically if about half of the total number of bits in the secret and ephemeral keys, assuming contiguous unknown bits in each key, are known, the system can be shown to be insecure. The same technique shows that if about half of the total number of bits in two ephemeral keys are known, again assumed contiguous unknown bits in each key, but with no knowledge of the secret key, the system can be shown to be insecure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.