Abstract

Motivated by recent developments in heterogeneous cellular networks and physical-layer security, we aim to characterize the fundamental limits of secure communication in networks. Based on a general model in which both transmitters and receivers are randomly scattered in space, we model the locations of K-tier base stations, users, and potential eavesdroppers as independent two-dimensional Poisson point processes. Using the proposed model, we analyze the achievable secrecy rates for an arbitrarily located mobile user. Assuming that the cell selection is based on achievable-secrecy-rate threshold, we obtain approximations for: (a) secrecy coverage probability and (b) average secrecy load per tier. We also investigate how the network performance is affected by secrecy rate threshold, eavesdropper density, and different access strategies are analyzed, respectively. Finally, our theoretical claims are confirmed by the numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.