Abstract
The main goal of this paper is to estimate the magnitude of the second largest eigenvalue in absolute value, λ2, of (the adjacency matrix of) a randomd-regular graph,G. In order to do so, we study the probability that a random walk on a random graph returns to its originating vertex at thek-th step, for various values ofk. Our main theorem about eigenvalues is that $$E|\lambda _2 (G)|^m \leqslant \left( {2\sqrt {2d - 1} \left( {1 + \frac{{\log d}}{{\sqrt {2d} }} + 0\left( {\frac{1}{{\sqrt d }}} \right)} \right) + 0\left( {\frac{{d^{3/2} \log \log n}}{{\log n}}} \right)} \right)^m $$ for any\(m \leqslant 2\left\lfloor {log n\left\lfloor {\sqrt {2d - } 1/2} \right\rfloor /\log d} \right\rfloor \), where E denotes the expected value over a certain probability space of 2d-regular graphs. It follows, for example, that for fixedd the second eigenvalue's magnitude is no more than\(2\sqrt {2d - 1} + 2\log d + C'\) with probability 1−n −C for constantsC andC′ for sufficiently largen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.