Abstract

This paper is concerned with the existence of globally smooth so- lutions for the second boundary value problem for certain Monge-Amp` ere type equations and the application to regularity of potentials in optimal transportation. In particular we address the fundamental issue of determining conditions on costs and domains to ensure that optimal mappings are smooth diffeomorphisms. The cost functions satisfy a weak form of the condition (A3), which was introduced in a recent paper with Xi-nan Ma, in conjunction with interior regularity. Our condition is optimal and includes the quadratic cost function case of Caffarelli and Urbas as well as the various examples in our previous work. The approach is through the derivation of global estimates for second derivatives of solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.