Abstract

Abstract The Amundsen Sea low (ASL) is a quasi-stationary low pressure system that affects climate in West Antarctica. Previous studies have shown that El Niño–Southern Oscillation (ENSO) modulates the position and strength of the ASL with the strongest teleconnection found in austral winter despite the amplitude of ENSO events generally being largest in austral autumn/summer. This study investigates the mechanisms behind the seasonality of the El Niño teleconnection to the Amundsen Sea region (ASR) using experiments with the HadGEM3 climate model forced with an idealized fixed El Niño sea surface temperature anomaly present throughout the year. The seasonality of the El Niño–ASR teleconnection is found to originate from seasonal differences in the large-scale zonal winds in the South Pacific sector. In austral winter, the region of strong absolute vorticity near ~30°S associated with the subtropical jet, in combination with the changes to upper-tropospheric divergence due to the El Niño perturbation, acts as an anomalous Rossby wave source that is largely absent in austral summer. Furthermore, in austral summer the poleward propagation of tropically sourced Rossby waves into the ASR is inhibited by the strong polar front jet in the South Pacific sector, which leads to Rossby wave reflection away from the ASR. In austral winter, Rossby waves are able to propagate into the ASR, forming part of the Pacific South America pattern. The lack of the Rossby wave source in the tropical Pacific and the absence of favorable conditions for wave propagation explains the weaker El Niño–ASR teleconnection in austral summer compared to austral winter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.