Abstract

The well known Schröder–Bernstein Theorem states that any two sets with one to one maps into each other are isomorphic. The question of whether any two (subisomorphic or) direct summand subisomorphic algebraic structures are isomorphic, has long been of interest. Kaplansky asked whether direct summands subisomorphic abelian groups are always isomorphic? The question generated a great deal of interest. The study of this question for the general class of modules has been somewhat limited. We extend the study of this question for modules in this paper. We say that a module Msatisfies the Schröder–Bernstein property (S-B property) if any two direct summands of M which are subisomorphic to direct summands of each other, are isomorphic. We show that a large number of classes of modules satisfy the S-B property. These include the classes of quasi-continuous, directly finite, quasi-discrete and modules with ACC on direct summands. It is also shown that over a Noetherian ring R, every extending module satisfies the S-B property. Among applications, it is proved that the class of rings R for which every R-module satisfies the S-B property is precisely that of pure-semisimple rings. We show that over a commutative domain R, any two quasi-continuous subisomorphic R-modules are isomorphic if and only if R is a PID. We study other conditions related to the S-B property and obtain characterizations of certain classes of rings via those conditions. Examples which delimit and illustrate our results are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.