Abstract

Background It is not predictable which patients will develop a severe inflammatory response after successful cardiopulmonary resuscitation (CPR), also known as “postcardiac arrest syndrome.” This pathology affects only a subgroup of cardiac arrest victims. Whole body ischemia/reperfusion and prolonged shock states after return of spontaneous circulation (ROSC) may both contribute to this devastating condition. The vascular endothelium with its glycocalyx is especially susceptible to initial ischemic damage and may play a detrimental role in the initiation of postischemic inflammatory reactions. It is not known to date if an immediate early damage to the endothelial glycocalyx, detected by on-the-scene blood sampling and measurement of soluble components (hyaluronan and syndecan-1), precedes and predicts multiple organ failure (MOF) and survival after ROSC. Methods 15 patients after prehospital resuscitation were included in the study. Serum samples were collected on the scene immediately after ROSC and after 6 h, 12 h, 24 h, and 48 h. Hyaluronan and syndecan-1 were measured by ELISA. We associated the development of multiple organ failure and 30-day survival rates with these serum markers of early glycocalyx damage. Results Immediate serum hyaluronan concentrations show significant differences depending on 30-day survival. Further, the hyaluronan level is significantly higher in patients developing MOF during the initial and intermediate resuscitation period. Also, the syndecan-1 levels are significantly different according to MOF occurrence. Conclusion Serum markers of glycocalyx shedding taken immediately on the scene after ROSC can predict the occurrence of multiple organ failure and adverse clinical outcome in patients after cardiac arrest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.