Abstract

The temperature fluctuations generated by viscous dissipation in an isotropic turbulent flow are studied using direct numerical simulation. It is shown that their scaling with Reynolds number is at odds with predictions from recent investigations. The origin of the discrepancy is traced back to the anomalous scaling of the dissipation rate fluctuations. Phenomenological arguments are presented which explain the observed results. The study shows that previously proposed models underpredict the variance of frictional temperature fluctuations by a factor proportional to the square of the Taylor-scale Reynolds number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call