Abstract

This paper investigates the scaling exponent of polar codes for binary-input energy-harvesting (EH) channels with infinite-capacity batteries. The EH process is characterized by a sequence of i.i.d. random variables with finite variances. The scaling exponent $\mu$ of polar codes for a binary-input memoryless channel (BMC) characterizes the closest gap between the capacity and non-asymptotic rates achieved by polar codes with error probabilities no larger than some non-vanishing $\varepsilon\in(0,1)$. It has been shown that for any $\varepsilon\in(0,1)$, the scaling exponent $\mu$ for any binary-input memoryless symmetric channel (BMSC) with $I(q_{Y|X})\in(0,1)$ lies between 3.579 and 4.714 , where the upper bound $4.714$ was shown by an explicit construction of polar codes. Our main result shows that $4.714$ remains to be a valid upper bound on the scaling exponent for any binary-input EH channel, i.e., a BMC subject to additional EH constraints. Our result thus implies that the EH constraints do not worsen the rate of convergence to capacity if polar codes are employed. The main result is proved by leveraging the following three existing results: scaling exponent analyses for BMSCs, construction of polar codes designed for binary-input memoryless asymmetric channels, and the save-and-transmit strategy for EH channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call