Abstract
AbstractIn the most commonly used scale‐up method of plasticating extruder screws, the screw channel depth is increased by the square root of the diameter ratio while the screw RPM is decreased by the square root of the diameter ratio such that the output rate increases proportionally to the square of the diameter ratio. This scale‐up method, largely based on the pumping function of the screw, often leads to a higher melt temperature, a higher screw horsepower consumption per unit output rate and an inferior melt quality from the larger diameter screw. Analysis of the common scale‐up method reveals that, although the shear rate in the melt is kept constant, the average residence time and the peripheral screw speed are increased for the larger diameter screw. Our recent study on the melting mechanism also reveals that the melting capacity increases less than the pumping capacity. A detailed examination of the common scale‐up method in this paper shows that the pumping capacity and the solid conveying capacity increase more than necessary while the melting capacity increases insufficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.