Abstract
We study hypercyclicity properties of functions of Banach space operators. Generalizations of the results of Herzog–Schmoeger and Bermudez–Miller are obtained. As a corollary we also show that each non-trivial operator commuting with a generalized backward shift is supercyclic. This gives a positive answer to a conjecture of Godefroy and Shapiro. Furthermore, we show that the norm-closures of the set of all hypercyclic (mixing, chaotic, frequently hypercyclic, respectively) operators on a Hilbert space coincide. This implies that the set of all hypercyclic operators that do not satisfy the hypercyclicity criterion is rather small—of first category (in the norm-closure of hypercyclic operators).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.