Abstract
AbstractWe propose a generalized Cramér–Lundberg model of the risk theory of non-life insurance and study its ruin probability. Our model is an extension of that of Dubey (1977) to the case of multiple insureds, where the counting process is a mixed Poisson process and the continuously varying premium rate is determined by a Bayesian rule on the number of claims. We use two proofs to show that, for each fixed value of the safety loading, the ruin probability is the same as that of the classical Cramér–Lundberg model and does not depend on either the distribution of the mixing variable of the driving mixed Poisson process or the number of claim contracts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.