Abstract
Stability of a heavy rotating rod with a variable cross section is studied by energy method. Bifurcation points for the system of equilibrium equations are analyzed. It is shown that for the case when the rotation speed exceeds the critical one, the trivial solution ceases to be the minimizer of the potential energy, so that rod loses stability, according to the energy criteria. Also, a new estimate of the maximal rod deflection in the post-critical state is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.