Abstract

A series of experiments conducted by Chan has shown that while some shock waves may not be strong enough to induce detonation when they collide with an obstacle the resulting Mach stem will induce detonation if it collides with a subsequent obstruction. A series of numerical simulations, however, failed to demonstrate the expected results if either the Euler or laminar Navier-Stokes equations are solved. On the other hand, calculations using the Favre averaged Navier-Stokes equations with a k-\(\epsilon\)-F turbulence model are able to reproduce the experimental results, indicating that turbulent effects may play an important role in the ignition process. A detailed examination of the results shows that turbulence causes the formation of activated kernels in a similar process to that observed in deflagration-detonation transition. The simulations in this paper have been undertaken using a modern high resolution hydrocode and a reduced kinetics mechanism for hydrogen combustion. The paper describes the reduced mechanism, the solution methods employed in the hydrocode and discusses the results of the simulations and their implications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.