Abstract

Molecular dynamics simulations of the electrical double layer at electrode–ionic liquid interfaces allow for molecular level interpretation of the interfacial phenomena and properties, such as differential capacitance (C). In this work, we have simulated an ionic liquid – 1-butyl-3-methylimidazolium hexafluorophosphate – at three gold surfaces, namely: Au(100), Au(110), and Au(111) surfaces. Atomic corrugation of the gold surface leads to higher C values due to the rapprochement of the surface and electrolyte charge planes. Likewise, by accounting for the shift of surface charge plane position towards the electrolyte also results in higher C values. The presented insight shows that a simple correction to the simulation data improves the agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.