Abstract

In order to investigate the importance of the monomeric γ-carbon chemistry in lignin biopolymerization and structure, synthetic lignins (dehydrogenation polymers; DHP) were made from monomers with different degrees of oxidation at the γ-carbon, i.e., carboxylic acid, aldehyde and alcohol. All monomers formed a polymeric material through enzymatic oxidation. The polymers displayed similar sizes by size exclusion chromatography analyses, but also exhibited some physical and chemical differences. The DHP made of coniferaldehyde had poorer solubility properties than the other DHPs, and through contact angle of water measurement on spin-coated surfaces of the polymeric materials, the DHPs made of coniferaldehyde and carboxylic ferulic acid exhibited higher hydrophobicity than the coniferyl alcohol DHP. A structural characterization with 13C NMR revealed major differences between the coniferyl alcohol-based polymer and the coniferaldehyde/ferulic acid polymers, such as the predominance of aliphatic double bonds and the lack of certain benzylic structures in the latter cases. The biological role of the reduction at the γ-carbon during monolignol biosynthesis with regard to lignin polymerization is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call