Abstract

Inferring effective connectivity from neurophysiological data is a challenging task. In particular, only a finite (and usually small) number of sites are simultaneously recorded, while the response of one of these sites can be influenced by other sites that are not being recorded. In the hippocampal formation, for instance, the connections between areas CA1-CA3, the dentate gyrus (DG), and the entorhinal cortex (EC) are well established. However, little is known about the relations within the EC layers, which might strongly affect the resulting effective connectivity estimations. In this work, we build excitatory/inhibitory neuronal populations representing the four areas CA1, CA3, the DG, and the EC and fix their connectivities. We model the EC by three layers (LII, LIII, and LV) and assume any possible connection between them. Our results, based on Granger Causality (GC) and Partial Transfer Entropy (PTE) measurements, reveal that the estimation of effective connectivity in the hippocampus strongly depends on the connectivities between EC layers. Moreover, we find, for certain EC configurations, very different results when comparing GC and PTE measurements. We further demonstrate that causal links can be robustly inferred regardless of the excitatory or inhibitory nature of the connection, adding complexity to their interpretation. Overall, our work highlights the importance of a careful analysis of the connectivity methods to prevent unrealistic conclusions when only partial information about the experimental system is available, as usually happens in brain networks. Our results suggest that the combination of causality measures with neuronal modeling based on precise neuroanatomical tracing may provide a powerful framework to disambiguate causal interactions in the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.