Abstract

The behavioral and neural dynamics of response inhibition deficits in alcohol use disorder (AUD) are still largely unclear, despite them possibly being key to the mechanistic understanding of the disorder. Our study investigated the effect of automatic vs. controlled processing during response inhibition in participants with mild-to-moderate AUD and matched healthy controls. For this, a Simon Nogo task was combined with EEG signal decomposition, multivariate pattern analysis (MVPA), and source localization methods. The final sample comprised n = 59 (32♂) AUD participants and n = 64 (28♂) control participants. Compared with the control group, AUD participants showed overall better response inhibition performance. Furthermore, the AUD group was less influenced by the modulatory effect of automatic vs. controlled processes during response inhibition (i.e., had a smaller Simon Nogo effect). The neurophysiological data revealed that the reduced Simon Nogo effect in the AUD group was associated with reduced activation differences between congruent and incongruent Nogo trials in the inferior and middle frontal gyrus. Notably, the drinking frequency (but not the number of AUD criteria we had used to distinguish groups) predicted the extent of the Simon Nogo effect. We suggest that the counterintuitive advantage of participants with mild-to-moderate AUD over those in the control group could be explained by the allostatic model of drinking effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call