Abstract

Unlike visual and tactile stimuli, auditory signals that allow perception of timbre, pitch and localization are temporal. To process these, the auditory nervous system must either possess specialized neural machinery for analyzing temporal input, or transform the initial responses into patterns that are spatially distributed across its sensory epithelium. The former hypothesis, which postulates the existence of structures that facilitate temporal processing, is most popular. However, I argue that the cochlea transforms sound into spatiotemporal response patterns on the auditory nerve and central auditory stages; and that a unified computational framework exists for central auditory, visual and other sensory processing. Specifically, I explain how four fundamental concepts in visual processing play analogous roles in auditory processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.