Abstract

The work is focused on a detailed simulation of the key stages involved in the NiTinol self-expanding stenting surgical procedure; i.e., crimping, deployment, SMA activation, as well as post-surgery steady-state cyclic behavior mimicking the systolic-to-diastolic pressure oscillations. To this end, a general multi-mechanism SMA model was utilized, whose calibration was completed using the test data from simple isothermal uniaxial tension experiments. The emphasis in the study was placed on the comparison of two alternative SMA activation protocols, in terms of both the immediate and long-term (post-surgery) performance characteristics. The first is ‘hard’ mechanical activation utilizing superelasticity, and the second is ‘soft’ thermal activation relying upon the combined one-way shape memory effect and constrained-recovery characteristics of the NiTinol material.The important findings are (1) the thermal activation protocol is far superior compared to the mechanical counterpart, from the point of view of lower magnitudes of the induced outward chronic forces, lesser developed stresses in the host tissue, as well as higher compression ratio with lesser crimping force for the same geometry of initial stent memory configuration, (2) the thermal activation protocol completely bypassed the complications of maintaining the high restraining force during deployment of the stent, and (3) there is no indication of any detrimental functional fatigue/degradation in the cured stenotic artery during cyclic pressure oscillations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.