Abstract

YBa2Cu3O7–x (YBCO) coated conductors are emerging as an important option for magnets for energy systems and experimental science. One of the remaining challenges for YBCO superconducting magnets is quench protection, i.e. ensuring that the YBCO is not damaged due to a fault condition. One key issue is understanding the underlying causes of degradation during a quench. Here, the microstructure of a quenched, degraded sampled is compared to that of an unquenched control sample. To facilitate microstructural analysis of the YBCO surface, the Cu stabilizer and Ag cap layer were removed by etching. Reactions between the Cu etchant and YBCO proved to be a signature of Ag/YBCO delamination. Two types of pre-existing defects were identified as initiation points of degradation. Defects on the conductor edge resulting in delaminated Ag lead to dendritic flux avalanches and high local heating, which cause further Ag delamination. This self-propagating effect results in dendritic Ag delamination, which is seen through etchant–YBCO reactions. Defects within the YBCO layer result in breaches in the protective Ag layer such that Cu etchant penetrates and reacts with the YBCO. Energy-dispersive X-ray spectroscopy analysis showed similar reactions as in the edge degradation but also showed pure Ag particles, which indicates that the local temperature was sufficient to cause localized Ag melting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.