Abstract
A systematic study of protodeauration, a crucial step often found in gold catalysis, was performed using isolated vinyl gold(I) complexes. By varying substituents on gold complexes, we explore how their properties influence protodeauration. Phenols were employed as the proton source, and their substituents were also varied, providing insight through variation of their acidity. A linear Hammett correlation is identified for the series of substituted vinyl gold(I) complexes, while a nonlinear trend is found for the series of substituted phenols. Computationally, we reproduce our experimental observations and identify significant noncovalent interactions (NCIs) between the proton donor and vinyl gold(I) complexes. This finding is of particular importance for gold-catalyzed reactions as they often employ linear two-coordinate complexes where the site of the reaction is spatially remote from the ligand bound to gold. The NCIs between substrates and intermediates lead to a significant acceleration of the protodeauration step in this work, opening the door to alternative strategies in the field of gold catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.