Abstract
In a previous work [Poveda, Varella, and Mohallem (Poveda et al., Atoms, 2021, 9: 64) it was shown that the bell-like shape of the 0 → 1 vibrational excitation cross section of H2 as a function of the incoming positron energy, with its characteristic sharp onset at threshold, can be accounted for by a simple model which couples the positron to the vibrational mode of the molecule, throught the behavior of the target polarizabitity with the internuclear bond distance. The study, carried out via time-dependent wave-packet dynamics propagation, relies on a two-dimensional potential energy surface involving just the scattering (positron-target) and vibrational (target) coordinates. Here the model is extended to the full three-dimensional configuration space of the positron-diatomic complex, with the cross sections computed within a time-independent close-coupling approach. The present results confirm the previous findings, shedding light on the mechanisms through which a low-energy positron couples to the molecular vibrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.