Abstract

A 1-km-wide peridotite mylonite shear zone is exposed in the Othris peridotite massif in central Greece. The mylonites contain lenses of relatively coarse olivine crystals, which are interpreted as remnants of the tectonite microstructure in the adjacent wall rocks. Microstructure and texture analysis using light and SEM microscopy suggests that the dominant deformation mechanism in the tectonites was dislocation creep, whereas the deformation in the mylonites was probably controlled by grain-size sensitive (GSS) creep in fine-grained (<50μm) bands consisting of a mixture of olivine and orthopyroxene. The development of the fine-grained material in the mylonites can be explained by a melt-present reaction taking place in the tectonite protolith. This reaction led to the replacement of orthopyroxene porphyroclasts by fine-grained olivine and orthopyroxene. Tectonites adjacent to the mylonite zone preserve evidence for this reaction in the form of rims of fine-grained olivine and orthopyroxene around orthopyroxene porphyroclasts. This study illustrates the significance of rheological weakening of oceanic mantle lithosphere as a result of a change from dislocation to GSS creep.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.