Abstract

This paper examines the roles of the matrix weight elements in matrix-weighted consensus. The consensus algorithms dictate that all agents reach consensus when the weighted graph is connected. However, it is not always the case for matrix weighted graphs. The conditions leading to different types of consensus have been extensively analysed based on the properties of matrix-weighted Laplacians and graph theoretic methods. However, in practice, there is concern on how to pick matrix-weights to achieve some desired consensus, or how the change of elements in matrix weights affects the consensus algorithm. By selecting the elements in the matrix weights, different clusters may be possible. In this paper, we map the roles of the elements of the matrix weights in the systems consensus algorithm. We explore the choice of matrix weights to achieve different types of consensus and clustering. Our results are demonstrated on a network of three agents where each agent has three states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.