Abstract

Using Autodock, docking of penicillin G to the crystal structures of penicillin-recognizing enzymes leads to an alignment in the active site Ser-X-X-Lys region consisting of the serine hydroxyl group, the terminal amino group of lysine, a second hydroxyl group, and the N–C=O of the β-lactam. This alignment is consistent with the notion that acylation of the serine hydroxyl group proceeds by a one-step cooperative mechanism in which C–O bond formation and proton transfer to the β-lactam nitrogen take place through a heteroatom bridge. For the cooperative ring opening of penam by two molecules of methanol and one molecule of methylamine or one molecule of water, density functional theory with the B3LYP DFT gradient-corrected functional and the 6–31G(d) basis set reproduces the alignment seen in the docked structures. Methylamine lowers the barrier calculated at MP2/6–31G(d) from the DFT-optimized geometries by 3 kcal/mol; water increases the barrier by 4 kcal/mol. The function of the conserved lysine in the active sites of penicillin-recognizing enzymes is therefore to catalyze the formation of an acyl enzyme by a cooperative mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.