Abstract

A planar anisotropic curvature flow equation with constant driving force term is considered when the interfacial energy is crystalline. The driving force term is given so that a closed convex set grows if it is sufficiently large. If initial shape is convex, it is shown that a flat part called a facet (with admissible orientation) is instantaneously formed. Moreover, if the initial shape is convex and slightly bigger than the critical size, the shape becomes fully faceted in a finite time provided that the Frank diagram of interfacial energy density is a regular polygon centered at the origin. The proofs of these statements are based on approximation by crystalline algorithm whose foundation was established a decade ago. Our results indicate that the anisotropy of interfacial energy plays a key role when crystal is small in the theory of crystal growth. In particular, our theorems explain a reason why snow crystal forms a hexagonal prism when it is very small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.