Abstract

Bifurcations of a thin circular elastic plate subjected to uniform normal pressure are investigated by taking into account the in-plane compliance of the edge restraint. This effect amounts to introducing a Hookean spring relating the radial components of the membrane stress tensor and the corresponding in-plane displacement fields. The addition of this new feature gives rise to an adaptive radial stretching of our configuration, which is intimately linked to the strength of the applied pressure. The Foppl-von Karman nonlinear plate theory, in conjunction with singular perturbation arguments, help us to establish the nature of the localised wrinkling observed in numerical simulations. Asymptotic analysis of the problem provides some simple qualitative predictions for the dependence of the critical load on a number of key dimensionless parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call