Abstract

Consider the geo-localization task of finding the pose of a camera in a large 3D scene from a single image. Most existing CNN-based methods use as input textured images. We aim to experimentally explore whether texture and correlation between nearby images are necessary in a CNN-based solution for the geo-localization task. To do so, we consider lean images, textureless projections of a simple 3D model of a city. They only contain information related to the geometry of the scene viewed (edges, faces, and relative depth). The main contributions of this paper are: (i) to demonstrate the ability of CNNs to recover camera pose using lean images; and (ii) to provide insight into the role of geometry in the CNN learning process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.