Abstract
Comparison and similarity measurement have been a key topic in computer vision for a long time. There is, indeed, an extensive list of algorithms and measures for image or subimage comparison. The superiority or inferiority of different measures is hard to scrutinize, especially considering the dimensionality of their parameter space and their many different configurations. In this work, we focus on the comparison of binary images, and study different variations of Baddeley’s Delta Metric, a popular metric for such images. We study the possible parameterizations of the metric, stressing the numerical and behavioural impact of different settings. Specifically, we consider the parameter settings proposed by the original author, as well as the substitution of distance transformations by regularized distance transformations, as recently presented by Brunet and Sills. We take a qualitative perspective on the effects of the settings, and also perform quantitative experiments on separability of datasets for boundary evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.