Abstract

Recently, it has become clear that dendritic cells (DCs) are essential for the priming of T cell responses. However, their role in the maintenance of peripheral T cell tolerance remains largely undefined. Herein, an antigen-presenting cell (APC) transfer system was devised and applied to experimental allergic encephalomyelitis (EAE), to evaluate the contribution that DCs play in peripheral T cell tolerance. The CD8α−CD4+ subset, a minor population among splenic DCs, was found to mediate both tolerance and bystander suppression against diverse T cell specificities. Aggregated (agg) Ig-myelin oligodendrocyte glycoprotein (MOG), an Ig chimera carrying the MOG 35–55 peptide, binds and cross-links FcγR on APC leading to efficient peptide presentation and interleukin (IL)-10 production. Furthermore, administration of agg Ig-MOG into diseased mice induces relief from clinical EAE involving multiple epitopes. Such recovery could not occur in FcγR-deficient mice where both uptake of Ig-MOG and IL-10 production are compromised. However, reconstitution of these mice with DC populations incorporating the CD8α−CD4+ subset restored Ig-MOG–mediated reversal of EAE. Transfer of CD8α+ or even CD8α−CD4− DCs had no effect on the disease. These findings strongly implicate DCs in peripheral tolerance and emphasize their functional potency, as a small population of DCs was able to support effective suppression of autoimmunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.