Abstract

Using a lattice model of protein folding, we find that once certain native contacts have been formed, folding to the native state is inevitable, even if the only energetic bias in the system is nonspecific, homopolymeric attraction to a collapsed state. These conformations can be quite geometrically unrelated to the native state (with as low as only 53% of the native contacts formed). We demonstrate these results by examining the Monte Carlo kinetics of both heteropolymers under Go interactions and homopolymers, with the folding of both types of polymers to the native state of the heteropolymer. Although we only consider a 48-mer lattice model, our findings shed light on the effects of geometrical restrictions, including those of chain connectivity and steric excluded volume, on protein folding. These effects play a complementary role to that of the rugged energy landscape. In addition, the results of this work can aid in the interpretation of experiments and computer simulations of protein folding performed at elevated temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.