Abstract

Abstract. The contribution of resonant wave-particle interactions to the formation and decay of the magnetospheric ring current is analysed in the framework of a self-consistent set of equations which take into account azimuthal plasmasphere asymmetry. It is shown that the cyclotron interaction of westward drifting energetic protons with Alfven waves in the evening-side plasmaspheric bulge region leads to the formation of a ring current asymmetry located near 18:00 MLT. The time-scale of this asymmetry is determined by the proton drift time through the plasmaspheric bulge and is about 1 - 3 h. A symmetrical ring current decays mainly due to charge exchange processes. The theory is compared with known experimental data on ions and waves in the ring current and on low-latitude magnetic disturbances. New low-latitude magnetometer data on the magnetic storm of 24 - 26 July 1986 are also discussed. The model presented explains the observed localization of an asymmetrical ring current loop in the evening sector and the difference in relaxation time-scales of the asymmetry and the Dst index. It also explains measured wave turbulence levels in the evening-side plasmasphere and wave observation statistics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.