Abstract

In this article, we provide an accessible introduction to the emerging idea of Age of Information (AoI) that quantifies freshness of information and explore its possible role in the efficient design of freshness-aware Internet of Things (IoT). We start by summarizing the concept of AoI and its variants with emphasis on the differences between AoI and other well-known performance metrics in the literature, such as throughput and delay. Building on this, we explore freshness-aware IoT design for a network in which IoT devices sense potentially different physical processes and are supposed to frequently update the status of these processes at a destination node (e.g., a cellular base station). Inspired by recent interest, we also assume that these IoT devices are powered by wireless energy transfer by the destination node. For this setting, we investigate the optimal sampling policy that jointly optimizes wireless energy transfer and scheduling of update packet transmissions from IoT devices with the goal of minimizing long-term weighted sum-AoI. Using this, we characterize the achievable AoI region. We also compare this AoI-optimal policy with the one that maximizes average throughput (throughput-optimal policy), and demonstrate the impact of system state on their structures. Several promising directions for future research are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.