Abstract
Role and effects of electromagnetic fiin living organisms and ecosystems are discussed within a nonlinear mechanism of charge transport processes that take place during respiration and photosynthesis, as well as in hydrogen-bonded chains of water molecules. Such mechanism is based on the account of the interaction between charges and induced by the distortions of macromolecules or water chains, which results in the self-trapping of charges in soliton states. It is shown that electrosolitons have some characteristic frequency, with respect to which periodic electromagnetic fi elds have resonant effect on their dynamics and stability. At certain conditions unbiased (with zero mean-value) periodic electromagnetic radiation can cause drift of solitons along molecular chains, and, therefore, affect charge transport processes. Such drift of particles in unbiased fi elds is known as ratchet phenomenon. Similar dynamics can be caused by stochastic fi elds and takes place in water chains present in interfacial water in cells, in coherence domains of water in the atmosphere and oceans. These results can explain the mechanism of impact of the electromagnetic solar activity on metabolism of living organisms and functioning of ecosystems. Moreover, it provides the mechanism for the formation of ecosystems via fi eld-mediated exchange of information between the ecosystem elements and existence of the hierarchy of ecosystems. This study also indicates a possible danger of the electromagnetic smog on ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Design & Nature and Ecodynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.