Abstract

The explosive growth of video traffic on today's Internet promotes the rise of Neural-enhanced Video Streaming (NeVS), which effectively improves the rate-distortion trade-off by employing a cheap neural super-resolution model for quality enhancement on the receiver side. Missing by existing work, we reveal that the NeVS pipeline may suffer from a practical threat, where the crucial codec component (i.e., encoder for compression and decoder for restoration) can trigger adversarial attacks in a man-in-the-middle manner to significantly destroy video recovery performance and finally incurs the malfunction of downstream video perception tasks. In this paper, we are the first attempt to inspect the vulnerability of NeVS and discover a novel adversarial attack, called codec hijacking, where the injected invisible perturbation conspires with the malicious encoding matrix by reorganizing the spatial-temporal bit allocation within the bitstream size budget. Such a zero-day vulnerability makes our attack hard to defend because there is no visual distortion on the recovered videos until the attack happens. More seriously, this attack can be extended to diverse enhancement models, thus exposing a wide range of video perception tasks under threat. Evaluation based on state-of-the-art video codec benchmark illustrates that our attack significantly degrades the recovery performance of NeVS over previous attack methods. The damaged video quality finally leads to obvious malfunction of downstream tasks with over 75% success rate. We hope to arouse public attention on codec hijacking and its defence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.